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Exact solutions for diffusion-reaction processes in one 
dimension: 11. Spatial distributions 

John L Spouge 
Laboratory of Mathematical Biology, National Cancer Institute, National Institutes of 
Health, Bethesda, MD 20892, USA 

Received 23 March 1988 

Abstract. As in an earlier paper, this paper examines one-dimensional diffusion-reaction 
processes. Exact results are given for one-dimensional polymerisation (cluster-cluster 
aggregation) occurring on subsets of 2, the infinite lattice, or R, the infinite line; the subsets 
.may have periodic, absorbing or reflecting boundary conditions. The earlier paper gave 
spatially averaged polymer concentrations; this paper describes the spatial distribution of 
the concentrations. Our results have corollaries applying to coalescing random walks, and 
to binary and n-ary annihilation, since these are just polymerisation, modulos 1, 2 or n. 
Through well known dualities, our results also apply implicitly to the T = 0 limit of the 
kinetic Ising model and to two interacting particle processes, the invasion and voter models. 

1. Introduction 

An earlier paper (Spouge 1988, hereafter referred to as I) considered a diffusion- 
reaction polymerisation process called ‘Ppoly’. Ppoly is a one-dimensional irreversible 
cluster-cluster (CL-CL) aggregation process. CL-CL in higher dimensions provides a 
theoretical description of many aggregation phenomena, including galaxy formation 
from cosmic dust, aerosol coalescence, rainfall from clouds and even chemical poly- 
merisation. 

Scaling theory (deGennes 1979), fractals (Family and Landau 1984) and the 
Smoluchowski coagulation equation (Drake 1972) provide models of aggregation, but 
make approximations of uncertain accuracy. Much theoretical effort has tried to 
estimate inaccuracies in these approximations, particularly when the approximations 
ignore spatial fluctuations (Kang and Redner 1984, 1985). Theories accounting for 
dimensionality can be tested by comparison to this paper since they should correctly 
predict one-dimensional behaviour. 

This paper also discusses ‘Pcoal’, a process consisting of identical particles executing 
one-dimensional coalescing random walks, and ‘Pnihil’, a model for one-dimensional 
diffusion-limited binary annihilation, such as the thermal soliton-antisoliton interac- 
tions occurring after the photoexcitation of trans-polyacetylene (Rsicz 1985). Like 
Ppoly, Pcoal and Pnihil also allow testing of theoretical approximations. Kang and 
Redner (1984) have done Monte Carlo simulations of all three processes, which we 
now define. 

Ppoly takes place on a ‘medium’, a subset of 2 (the lattice of integers) or R (the 
real line). 2 and R are the only media examined in the main body of this paper. We 
defer until later the complications introduced by periodic, absorbing or reflecting 
boundaries; these will be handled by the principle of reflection. 
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Ppoly begins at time t o = O  by distributing, possibly at random, a set of points on 
the medium. Polymer chemistry provides a convenient terminology: we call the initial 
points ‘monomers’. After t o ,  all monomers diffuse identically and independently and 
aggregate irreversibly when they meet. The resulting point aggregates (‘polymers’) are 
indistinguishable from monomers in their diffusive behaviour and also continue to 
aggregate when they meet. 

A polymer containing k monomers is a ‘k-mer’. Because it is useful to think of a 
k-mer as containing k monomers, and to think of each of these monomers as retaining 
a unique history, we distinguish between the 1-mers present at to (‘monomers’), and 
those present at later times (‘1-mers’). We will also use to instead of 0, particularly as 
a functional argument, to distinguish between the temporal and spatial zeros. 

ck(x, t )  d x  is defined to be the probability at time t of finding a k-mer in the interval 
[x, x + d x ) ,  in the limit as dx+O. This probability includes the effect of the initial 
distribution of monomer positions and all realisations of diffusive processes. For 
brevity, we shall say that ck(x, t )  is the concentration of k-mers at position x. In the 
following, this ‘position convention’, the use of a phrase like ‘at position x’, always 
implies an implicit limit like dx  + 0. 

In order to achieve a unity of exposition, the position convention will apply to 
both 2 and R. On R, ck(x, t )  is not always a generalised function (Lighthill 1978); 
on 2, by necessity, it always is. As an example, three ‘special’ initial monomer 
distributions play an important role in this paper: (a) the Poisson distribution on R, 
giving a uniform initial monomer distribution (for convenience, we scale length so 
that, on the average, this distribution places one monomer in each unit interval); (b) 
the delta distribution on Z or R, which places with certainty a monomer at each point 
of Z ;  and (c) the half-delta distribution on 2 or R, which places, independently with 
probability 4, a monomer at each point of 2. The special initial distributions give the 
following monomer concentrations: 

c,(x, t o )  = 1 (1.1) 

S ( y )  is the Dirac delta, defined by f ( y ) S ( y )  dy = f(0) for any ordinary function f 
(Lighthill 1978, p 17). In passing, note that (1.1) and (1.3) do not describe the Poisson 
and half-delta distributions completely, since these distributions place every monomer 
independently of the placement of any other monomer. 

The total concentration of polymers at position x at time t is 

This is also the concentration of 1-mers in the coalescence process (Kang and Redner 
1984), Pcoal, in which two 1-mers coalesce to form another 1-mer: 1-mer+l-mer+ 
1-mer. Pcoal is essentially Ppoly (mod 1). Because its 1-mers are executing coalescing 
random walks, Pcoal on 2 is the process dual to the Clifford-Sudbury voter model 
(1973), a type of interacting-particle system (Liggett 1985). 
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The binary annihilation process (Kang and Redner 1984, Torney and McConnell 
1983, Lushnikov 1987, Balding 1988), Pnihil, is essentially Ppoly (mod 2). The follow- 
ing reactions are possible: 1-mer+ 1-mer+ 0-mer, 0-mer+ 1-mer+ 1-mer and 0-mer+ 
0-mer + 0-mer. One usually considers the 0-mers to be non-existent, and monomers 
to annihilate one another when they meet. Because its 1-mers are executing annihilating 
random walks, Pnihil on 2 is related to the T = 0 limit of the Ising model (Glauber 
1963, Racz 1985). The concentrations of 1-mers in both Pnihil and Ppoly (mod 2) are 

Generalising (1.5) yields the concentrations in the n-ary annihilation process, Ppoly 
(mod n), in which a polymer is annihilated by the nth monomer to join it. Results 
for Ppoly therefore have implications for the coalescence, binary and n-ary annihilation 
processes. 

For brevity in the following, unsubscripted c will indicate statements or equations 
which hold if the c are subscripted by ‘k’, ‘+’ or ’--’. As an illustration, I focused on 
c k ( t ) ,  the number of k-mers per unit length averaged over the medium in question. In 
this paper, in order to account for spatial distributions, the focus is on ck(x, t ) ,  the 
concentration of k-mers at position x. Spatially averaged analogues such as ck( t )  may 
be identified by the omission of a spatial argument (cf ck(x, t ) )  and are defined on 2 
or R by 

r 

when the limit on the right exists. (A indicates a definition.) The interval notation 
for ranges of integration will be convenient in this paper. 

The omission of the subscript ‘k’ in (1.6) indicates that c + ( t )  and c - ( t )  can be 
defined analogously. Equation (1.6) gives ck( t )  a precise physical interpretation: it is 
the expectation at time t of the number of k-mers per unit length averaged over the 
medium in question. The expectation, like the one implicit in the definition of ck(x, t) ,  
is taken over all initial monomer positions and over all realisations of the diffusive 
processes for Ppoly. By contrast to ck(x, t ) ,  the concentration of k-mers at position x,  
this paper simply refers to Ck(t) as ‘the concentration of k-mers’. 

Our three special distributions are all invariant under translation through L = 1. 
In order to examine spatial variations, we perturb the initial distributions of (1.1)-( 1.3) 
by adding or removing a single monomer. These perturbations propagate through time 
as Ac(x, t ) ,  a ‘perturbation at position x’ to c ( x ,  t ) ,  the concentration at position x.  
Because of the averaging over the entire medium, however, a single monomer perturba- 
tion has no effect on the concentrations c ( t ) .  In order to follow the perturbation to 
the entire medium, we define 

Ac(M, t )  A Ac(x, t )  dx (1.7) I 
where ‘M’  will be replaced by ‘ R’ or ‘Z’, whichever is the relevant medium. Unspecified 
ranges of integration like the one above are assumed to be over the entire medium. 
By contrast to Ac(x, t ) ,  the perturbation at position x,  we simply refer to Ac(M, t )  as 
a ‘perturbation’. 

If cy(x, t )  is the relevant initial monomer distribution from (1.1)-( 1.3) and Ac,(x, t )  
is its perturbation, the perturbations of the special distributions c,(x, t )  = 
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cy(x, t ) + A c , ( x ,  t )  examined in this paper are 

c , ( x ,  t o )  = 1 + S ( x )  (1 .8)  
c 
f 

CI(X, t o )  = 

c , (x ,  t o )  = c $(x- k) - $ ( x ) .  

S ( x  - k) - S ( x )  
k = - m  

cc 

k = -  05 

(1.9) 

(1.10) 

The perturbed special distributions are: (a) the Poisson distribution with a monomer 
at position 0 added; (b) the delta distribution with the monomer at position 0 removed; 
and (c) the half-delta distribution with the monomer at position 0, if it exists, removed 
(the choice of adding or removing the monomer in case (c) was arbitrary). 

Armed with these preliminaries, we now explore the spatial distributions occurring 
in Ppoly, Pcoal and Pnihil. 

2. General results for concentrations and perturbations 

We solve Ppoly by focusing on its most elementary events, the collisions of monomer 
pairs. The key idea allowing a solution is that, in one dimension, the monomers are 
linearly ordered. This fact forces any polymer containing two given monomers to 
contain every monomer that started between them. The k-mer concentrations at 
position x are therefore related to certain events involving the collision of monomer 
pairs. 

Let us begin by noting that each polymer has two directions in which to meet other 
polymers. Let us call the positive direction, ‘right’, and the negative, ‘left’. Within 
each polymer, it will be convenient to define a ‘leftmost’ monomer, the one with the 
leftmost (i.e. most negative) initial position. 

ck(x, t )  is the probability at time t of finding a k-mer at position x. (Recall the 
‘position convention’: ‘at position x’  implies an implicit limit.) Exactly one of the k 
monomers in a k-mer is the leftmost monomer. Hence ck(x ,  t )  is also the sum over 
all monomers, Po, of the probability that, at time t ,  Po is the leftmost monomer in a 
k-mer at position x. This probability can be calculated as follows. 

Let P- , ,  Po , .  . . , Pk-1, Pk be consecutive monomers, ordered in the positive 
direction at to,  but otherwise arbitrary. For the time being, let us consider a single 
initial state so that the initial positions of these monomers are fixed. Let A. be the 
event that, at time t, (a) the two monomers Po and Pk-l are in the same polymer and 
(b) the polymer is at position x. Let A, be the same event as Ao, but for P-, and Pk-1 
instead of Po and & - I ;  A2,  for and Pk; and A3,  for Po and Pk. Ao- ( A ,  U A,) is 
the event that, at time t ,  Po is the leftmost monomer in a k-mer at position x containing 

A, c Ao, because the linear ordering of the monomers in one dimension implies 
that a polymer containing both P-, and Pk-1 must also contain Po. Also, A3 c A. and 
A, n A, = A*. A Venn diagram of the A shows that 

PO, PI , * * . 9 Pk-1. 

Summing (2.1) over all possible initial positions for the monomer pairs ( P o ,  Pk-l ) ,  
( R I ,  P k - , ) ,  (Po ,  P k )  and (PPI, P k )  gives the probability defining ck(x, t ) .  The summa- 
tion requires: (a) the distribution of the initial positions y and z for the given monomer 
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pairs; and (b) the probability that, at time t ,  two monomers starting at given positions 
y and z have met and the polymer containing them is at position x. 

In order to account for the initial monomer positions, let P k ( y ,  z )  dy dz be the 
probability that there is some monomer, say Po, in the interval [y ,  y + dy) and that Pk,  
the corresponding kth neighbour, is in the interval [ z, z + dz) ,  as dy, dz + 0. We define 
Pk(yr z) A 0 when z < y.  

In order to account for monomer collisions and the position of the resultant polymer, 
define the annihilation Green function a ( x ,  t ;  y ,  z) to be the probability that, at time 
t ,  (a) two monomers Po and P starting at positions y and z are in the same polymer; 
and (b) the polymer is at position x. Because P I ( y ,  z) A 0 when z < y ,  the value of 
a ( x ,  t ;  y ,  z) for z < y  is irrelevant. (This is the case on 2 and R ;  for media with 
boundary conditions, we shall later extend the definition of a ( x ,  t ;  y ,  z )  to the regime 

If Z denotes a summation over all monomers Po, double-integrating over the 
z < Y. )  

possible initial positions of the monomer pairs gives 

c P(AJ = J J a ( x ,  ?; y ,  z)Pk-I(x 2 )  dy dz 

c P(Al )  =I P ( A 4  = [ [ a(x, t ;  Y ,  z ) P k ( y ,  2 )  dy dz 

C P ( A A  = [ [ a ( x ,  t ;  y ,  Z)Pk+I(Y, 2 )  dy dz. 

(2.2) 

For an isolated diffusing particle, let y ( x  - y ,  t )  be the probability that the particle 
diffuses from position y to position x in the time interval [0, t ] .  Recall that c , (y ,  to)  

is the probability at time to of finding a monomer at position y. When k = 1 ,  the 
physical interpretation of A. preceding (2.1) demands that Z P ( A o )  = j  y ( x - y ,  t )  
c,(y,  to) dy. The following definitions therefore make the physical interpretation con- 
sistent with (2.2): a ( x ,  t ;  y ,  y )  A y ( x  - y ,  ?) and Po(y, z) & c,(y ,  to)6(z -U). 

In all cases, then, (2.1) and (2.2) now give 

J J  

If ‘+’ or ‘-’ replaces ‘k’ in the first and last expressions of (2.3), equations (1.4) 
and (1 .5 )  define analogous kernels b+(y, z)  and k ( y ,  z) for c+(x, t )  and c-(x, t ) :  

(2.5) 
k = l  

Substituting (2.4) back into the analogue of (2.3) explains the simplicity of (2.4): 
the total polymer concentration at position x is equal to the concentration of those 
monomers at position x which have not met their right-hand neighbour. The sum in 
(2.5) also has a simple interpretation: it is the difference between the probability 
densities for a monomer at position y having an even and an odd neighbour at 
position z. 

The next section gives P k ( y ,  z) for the special distributions. With those P k ( y ,  z)  in 
hand, the annihilation Green function a ( x ,  t ;  y ,  z) completely determines the polymer 
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concentrations. We shall now relate a(x, t ;  y ,  z) to y(x  - y ,  t ) ,  the probability that an 
isolated diffusing particle moves from position y to position x in the time interval [0, t ] .  

For future reference, on 2, a continuous-time symmetric nearest-neighbour random 
walk (Feller 1971, p 59) with diffusion constant D = 1 gives 

cu 

y(x, t )  = exp(-2t)~,(2t)  1 ~ ( x -  k). (2.6) 

Z, is a modified Bessel function (Abramowitz and Stegun 1972, p 374). Note the use 
of the generalised functions in (2.6): the infinite row of delta functions places an atom 
of size exp(-2t)Zk(2t) on the points k of Z. 

On R, driftless Brownian motion (Krank 1979, p 12) with diffusion constant D = 1 
gives 

Since the unit of time can always be normalised to make D = 1, equations (2.6) and 
(2.7) involve no loss of generality. 

k = - x  

y ( x ,  t )  = ( 4 ~ t ) - ’ / ~  exp(-x2/4t). (2.7) 

We will show that on both 2 and R 

y ( w  - y ,  t )  dw. (2.8) i i (X,Oj) 

Y(W-Z,  t ) d w + y ( x - z ,  t )  a(x,  t ;  y ,  z )  = Y ( X  - y ,  t )  
(-m,xl 

In actual calculations for Z, the integrals are replaced by sums. We have, however, 
unified the presentation by using generalised functions (see, e.g., equation (2.6)). This 
causes no difficulty (Lighthill 1978, p 25), except when integrals like l(-x,yl 6(  w - x)  dw 
necessitate an ‘endpoint convention’ for Z :  ji-w,xl 6( w - x) dw A 1 and [(,,,, a( w - 
x)  dw 4 0. The endpoint convention can be verified by rewriting the integrals in (2.8) 
as sums. 

Equation (2.8) can be proved by the principle of reflection (see figure 1). Consider 
a single point ( Y ,  2)  diffusing in two dimensions, where the coordinates of the point 
start at ( y ,  z ) ,  within the shaded area of figure 1 where y < z, and always equal the 
one-dimensional positions of two diffusing polymers, which we call the y- and z- 
polymers. If the point hits the line Y = 2, the y -  and z-polymers have met, but we 
continue to follow the diffusion of the point, regarding 2 as the position of the resulting 
larger polymer. Let the point be at position (w, x )  at time t .  If w > x (the black point 
( w ,  x)  in the unshaded area), the two-dimensional diffusion crossed the line Y = Z. 
Otherwise, if w s x (the white point ( w ,  x )  in the shaded area), then every path from 
( y ,  z) to (w, x)  meeting the line Y = Z, when reflected across Y = Z after the path’s 
first intersection with Y = 2, corresponds to exactly one path from ( y ,  z) to (x, w).  
Integrating the probabilities over two half-lines starting from (x, x), one going horizon- 
tally to the right, the other going vertically down, gives (2.8). 

The following intermediate result is helpful: let b(y, z) be any of bk(y, z), b+(y, z) 
or b-(y ,  z )  and let c(x, t )  be the integral resulting from substituting b(y, z )  into the 
analogue of (2.3). Standard manipulation of the multiple integrals resulting from (2.3) 
yields 

4x3 t )  = { { { Y ( W ,  t ) y ( y ,  t )b(y+x,  z + x )  dy dz dw 
w E [ Z,W) 
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Figure 1. Two diffusing monomers start at positions y and z. They meet and the polymer 
containing them then ends at position x. This process is equivalent to a two-dimensional 
diffusion starting at the point (y ,  z ) ,  intersecting the line Y = 2 and, augmented thereafter 
by a dummy diffusing Y coordinate, diffusing to the line 2 - x .  By necessity, every 
two-dimensional diffusion ending on the black half-lille 2 = x intersects the line Y = 2; 
diffusions intersecting the line Y = 2 and ending on the white half-line 2 = x can be 
reflected across Y = 2 at their first intersection with Y = 2 to end on the indicated black 
half-line of Y = x. 

We now give a derivation of known results for c ( t )  from the results for c(x, t ) .  
The derivation may help to unify presentations of one-dimensional diffusion-reaction 
processes, but it does involve manipulating multiple integrals containing generalised 
functions. Because a convenient reference justifying these manipulations does not 
exist, we can only outline plausibility arguments for them. The derivation probably 
carries through for any 'physical' initial distribution, since I have verified independently 
its results for our special initial distributions. 

An earlier paper (Spouge 1988) presented spatially averaged results on 2 or R in 
terms of the following quantities: 

r 

(2.10) 

a ( t ;  U)' a(v ,  r ;  0, U )  do. i 
Replacing b ( u )  in (2.10) by co b ( u )  gives the notation used in I. This paper changed 
the notation in order to increase the resemblance between equations involving con- 
centrations and those involving perturbations. Paper I gives P k (  U )  for the three special 
distributions of this paper. Multiplying P k ( u )  from I by co gives ,&(U) in the present 
notation. 

Interpretations for co, b ( u )  and a ( t ;  U )  follow. co is the initial concentration of 
monomers, averaged over the medium. b( u)cg l  is esentially b(y ,  z ) ,  but for a randomly 
chosen monomer. For example, P k ( y ,  z )  is the probability of finding an initial monomer 
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at position y and its kth neighbour at position z; P k ( u ) c i ’  is the probability that a 
randomly chosen monomer has its kth neighbour at a distance U to the right. Equations 
(2.3)-(2.5) suggest the relationships between b k ( u ) ,  b+(u) ,  6-( U )  and Pk( U): these are 
given in I. 

The diffusions of equations (2.6) and (2.7) are spatially homogeneous, implying 
that a ( y  + u, t ;  y ,  y + U )  = a ( U, t ;  0, U). When a(y  + U, t ; y ,  y + U )  = a ( U, t ; 0,  U), a( t ; U )  
is the probability that two monomers starting at 0 and U (or at y and y + U )  are in the 
same polymer by time t .  Like the values of a(x, t ;  y ,  z )  for z < y ,  because Pk( U )  = 0 
when U < 0, the values a( t ;  U )  for U < 0 are irrelevant. 

y ( - x ,  t )  = y ( x ,  t )  (the diffusions are symmetric) and 5 y ( x ,  t)y(w -x, t )  dx = 
y(w, 2t)  (a  point diffusing to position w in the time interval [0,2t] diffused to some 
position x in the time interval [0, t], and then diffused a distance w - x in the remaining 
time interval [ t ,  2tl) .  Hence substituting (2.8) into (2.10) yields 

y(w,2 t )dw+ y(w, 2t)  dw. I a ( t ;  U )  = 
[u,m) 

(2.11) 

Equation (2.11) shows that a ( t ;  0) = 1. With the endpoint convention on 2, (2.11) 
agrees with results from I. On R open endpoints produce the same results as closed 
ones. This leads immediately to a useful relationship on R :  

(d /du)a( t ;  u ) = - ~ Y ( u ,  2t). (2.12) 

On 2 or R, when the diffusions have diffusion constant D =  1, a(x,  t ;  y ,  z) = 
O{exp[-(x -y)’/4t]} O{exp[-(x - z)’/4t]} as 1x -y l ,  jx - zI +. CO. This rapid decay is 
important because, for any fixed time t and sufficiently large P, ‘almost all’ monomers 
starting at position y give rise to polymers at positions x within [ y  - JP ,  y + J P ) .  (The 
choice off(  P )  = J P  is arbitrary; in the following,f( P )  need only satisfy l imp+mf(P) = 
CO and limp,, P - ’ f ( P )  = 0.) This implies that ‘almost all’ polymers at positions x 
within [ -P, P )  originate from monomers starting at positions y or z within [ - P - J P ,  
P + J P ) .  A related property holds for ‘physical’ initial monomer distributions: at any 
fixed time t ,  as P+co, O ( P )  polymers within [ - P - J P ,  P + J P )  contain monomers 
originating from within [ - P  - J P ,  - P )  or [P, P + J P ) .  These facts justify the necessary 
truncations, the change of variable from x, y and z to u ii x -y ,  y and U A z - y ,  and 
the interchanges in the order of limits and integration in the following: 

lim (1/2P)  1 1 a(x, t ;  y ,  z ) b ( y ,  z )  dy dz dx 
[-P,P) P-m 

= lim (1/2P) 1 I (1 ’ P + E  [-P-JP,P+, Pi [ -  v f,“ Pi 
, a ( y +  u, t ;  y ,  y + U )  du 

= lim ( 1 / 2 ~ )  J J a ( t ;  u ) b ( y , y + u ) d y d u .  
P-Cc [ - P -4 P, f +JP 1 

(2.13) 
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Equations (1.6) and (2.13), and then equation (2.10), yield 

c ( t ) =  P-ia lim (1/2P) [ [ - p * p )  [ I a(x, t ;  Y ,  z)b(y, z )  dY dz dx 

= J U ( ? ;  u)b(u)  du. (2.14) 

Equation (2.14) is the basic equation in I, derived there by other means. 
For a probabilistic distribution of monomer positions which is invariant under 

translation through a (not necessarily minimal) period L, e.g. the special distributions 
of this paper, spatial averages in (2.15) may be taken over a single period: 

c( t )  = L-' c(x, t )  dx, (2.15) 

Because c(x, t )  is a linear functional of P k ( y ,  z) (note that it is not a linear functional 
of the initial monomer concentrations c,(x, t o ) ) ,  Ac(x, t )  and Ab(y, z), the perturbations 
of c(x, t )  and b(y, z), are also related by (2.3). We therefore adopt standard perturbation 
notation: c(x, t)  = co(x, t)+Ac(x, t )  and b(y, z )  = bo(y, z)+Ab(y, z). For anyperturba- 
tion Acl(x, to) of the initial monomer distribution that decays rapidly as 1x1 + 00, e.g. 
a single monomer perturbation, a derivation similar to that for (2.14) but omitting 
averaging over [-P, P) gives an expression for the perturbation to a medium: 

Ac(M, t )  = a ( ? ;  u ) A b ( u )  du I (2.16) 

where, in specific cases, ' M '  is replaced by the relevant medium, R or 2. We can now 
derive some results for the special distributions. 

3. Results for the special initial distributions and their perturbations 

Where possible, we shall now derive closed results for the Poisson, delta and half-delta 
initial distributions. Analytic expressions for the concentrations resulting from the 
unperturbed initial distributions are known (Torney and McConnel 1983, Lushnikov 
1987, Balding 1988, Balding et a1 1988, Spouge 1988) but this section gives both extra 
intermediate results and some perturbation results as well. 

3.1. The Poisson distribution 

Let H ( y )  be the Heaviside unit function: H ( y )  = 0 for y < 0 and H ( y )  = 1 for y 3 0. 
For the Poisson distribution and k 3 1 
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Inserting A for 2 in the last two equations (3.1) allows ‘parallel processing’ of (2.9): 
the resulting multiple integrals not involving delta functions can be calculated by 
rotating the w - y  coordinate system for the first integral in (2.9) by 7r/4, integrating, 
and doubling the result. This gives 

c:(x, t )  = exp(2t) erfc(2t)”’ 

c!(x, t )  = exp(8t) erfc(8t)”’ 
(3.2) 

where erfc(z) = ( 2 / J r )  exp(-z2) dz = 1 - erf(z) is the complementary error function 
(Abramowitz and Stegun 1972, p 297). Equation (2.15) with, e.g., L =  1 shows that 
c(  t )  = co(x, t )  for this distribution. 

Let t k ( x )  A xk-’/(  k - 1) !. When the Poisson distribution is perturbed by a monomer 
inserted at position 0, for k 3 1 

A P k h  z) = exP[-(z-y)l{s(y)t,(z)H(z)+G(z)tk(-y)H(-v) 

Ab-(y ,  z) = [6(y)-2 eZYH(-y)][S(z) -2  e-”H(z)]. 

The first equation in (3.3) has three terms corresponding to: (a) at position z > 0, the 
kth monomer to the right of the monomer at position 0; (b) at position y < 0, the kth 
monomer to the left of the monomer at position 0; and (c) at position z > 0, the 
(k-1)th monomer to the right of a monomer at position y<O becoming the kth 
because of the inserted monomer at position 0. 

Inserting A for 2 in the last two equations (3.3) allows ‘parallel processing’ of (2.16) 
to give 

A b ( u )  = 6(u)-2A e-”H(u)+A*u e--”H(u). (3.4) 

Substituting this into (2.16) and then using (2.12) to integrate by parts yields 

Ac(R,  t )  = 2  ?(U, 2t)[(e-”” - A M  e-^“)H(u)]  du. (3.5) I 
The first term of this integral is like the integrals relevant to (3.2). The second term 
is then derived by differentiating the first term with respect to the parameter A. 
Substituting A = 1 and A = 2 gives 

Ac+(R, t )  = exp(2t) e r f ~ ( 2 t ) ” ~ ( l  - 4 t ) + ( 2 / J ~ ) ( 2 1 ) ” ’  

Ac-(R, t )  = exp(8t) erfc(8t)”’(l- 1 6 t ) S  (4/d7r)(2t)”’. 

3.2. The delta and hav-delta distributions 

The following intermediate result from (2.9) is useful: on both Z and R,  when 

b(Y, z) = S ( Y  -j)S(Z - k )  

c(x, t )  = Y ( j  - x, t )  Y(W, t )  d w + r ( k - x ,  1) (3.7) I [ k - X,”) 
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On 2, the above integrations are equivalent to striking out the delta functions in (2.6) 
for y(x, t )  and replacing the integrals above by sums. The Bessel function identities 
(Feller 1971, p 60) 

will be useful 
For the delta distribution on 2 or R, 

00 

b!(y ,z)= C 6 ( y - j )  
j=-m 

In conjunction with (3.7), these equations yield 

On 2, (2.6) and (3.10) give 

(3.9) 

(3.10) 

(3.11) 

The row of delta functions places equally sized atoms at each point of 2. Equation 
(2.15) with L = 1 shows that c ( t ) X Y m  S(x  -j) = c(x, t )  for the delta distribution on 2. 
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On R,  (2.15) with L =  1, when applied to (3.10), yields 

= ~ ~ [ k - l , k i ~ ~ [ k , k + l ~ ’ ~ [ - k , - ~ + l ~ ~ ~ ~ - k - l . - - ~ l ) . ~ ~ ~  2 t )  d w  (3.12) 

= - erf[( k - l ) / (8 t )  ”*I + 2 erf[k/(8t)”2] - erf[( k + 1)/(8t)”’] 

c+( t )  = erf[(st)-’”]. 

Figure 2(a)  plots C k ( t )  against t for the unperturbed delta distribution on R. Figure 
2 ( b )  plots c + ( t )  and c - ( t )  against t for the same distribution on 2. 

When the delta distribution is perturbed by deleting the monomer at position 0, 
for k 2 0, 

Equation (2.16) then gives 

A b + ( # ) =  - S ( U ) S ~ S ( U  - 1) - S ( U  -2) 
ic 

A b - ( # ) = -  S ( U ) + ~  C ( - l ) k k S ( u - k )  ( k = l  

Combining (3.7) and (3.14) then yields 

(3.13) 

(3.14) 

(3.15) 

c - 
0 

+ z 
s -10 s 8 -6 
B m 

0 -8  

-10 

zi 
- 

-4 0 4 8 -4 0 4 e -20 

Log time Log time 

Figure 2. In these log-log plots, all logarithms are to the base 2. ( a )  c , ( t )  against t for 
the delta distribution on R.  k = 1, 2, 4, 8, 16 on the left from top to bottom. ( b )  c + ( t )  
(top) and c-( t )  (bottom) against f for the delta distribution on Z. 
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On 2, (3.15), (2.6), (2.16) and (3.4) give 
X 

Ac+(x, t )  = -exp(-4t)[Zi(2t) - Ix~l (2 t )Zx+l(2 t ) ]  1 6(x- k) 

Ac_(x, t )  = ( - l ) x t l  exp(-6t)Zx(2r) 

Ac+(Z, t )  = -exp(-4t)[10(4t) - 12(4t)] 

Ac-(Z, t )  = -exp(-8t). 

k = - a  

X 

6(x- k) 
k = - s  

(3.16) 

On R, 

Ac+(R, t )  = -2 er41/(8t)”2]+er42/(8t)”2]. (3.17) 

1, i = -1, and 0, i > -1. For the half-delta Define the combinatorial coefficient (1,) 
distribution on R or 2, and k>O 

(3.18) 
X 

b!(y, z ) = $  1 S ( y - j ) [ S ( z - j ) - S ( z - j - l ) ] .  
j = - w  

b- for the half-delta distribution equals 36, for the delta distribution. The half-delta 
perturbation Ab- deletes all terms involving y = 0 or z = 0 from its 6-. Since the delta 
perturbation Ab+ does exactly this to its 6, as well, (3.11) and (3.16) for the delta 
distribution’s c+(x, t )  and Ac,(x, t ) ,  when halved, give c-(x, t )  and Ac-(x, t ) ,  respec- 
tively, for the half-delta distribution. Similar relationships hold between the concentra- 
tions c ( t ) .  

4. The asymptotics of c( t )  

These asymptotics depend on those of a ( t ;  U). On 2, (2.6) and (2.11) give 

a ( t ;  U )  = 1-2 C exp(-4t)lk(4t) -exp(-4t)Iu(4r) 
U - l  

k =0 

- 1 - ( 8 ~ t ) - ’ ” [  (2 k=O ufi’ 1 + 1) - (32t)-’( 2 k y1 -0 (4k’- 1) + (4u2- 1) 

- 1 - ~ - ” ~ ( 8 f ) - ’ / ~ ( 2 ~ + 1 ) +  ~ - ‘ ~ ~ ( 8 t ) - ~ / ~ ( 1 / 1 2 ) ( 8 ~ ~ - 2 u  -3) (4.1) 
(Abramowitz and Stegun 1972, p 377). The asymptotics have been written in a form 
for later use: descending powers of t ,  followed by factors involving U. 

a ( t ;  U )  = erfc[u(8t)-’/’] 

On R, (2.7) and (2.11) give 

( g t ) - ( 2 k - l ) / 2  2 k - 1  U 
-1+2T-1’2 (-l)k 

k = l  (2k - l ) (k - l ) !  

(Abramowitz and Stegun 1972, p 297). 
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Let b ( v )  be the Fourier transform (Lighthill 1978, p 15) of a given distribution 
b(u).  Then the kth moment of the distribution b is 

(4.3) 

where the subscript v = 0 indicates evaluation at 0. The preceding, and equations 
(2.14) and (2.16), relate the asymptotics of c ( t )  and A c ( M ,  t )  to the moments of 
distributions determined by the placement of the initial monomers. 

If the distances between consecutive monomers. . . , P-, , Po, P1,. . . are indepen- 
dently and identically distributed, the monomers are said to be in a renewal distribution 
(Bailey 1964, p 223). The above results simplify for a renewal distribution. Letfk(u) 
between the density function for the distance between any pair Pi and Pk+i in such a 
renewal. For consistency, define fo( U )  A 6(  U). By the definition of P k  following (2.1) 

P k ( Y ,  Y + U )  = C , ( X  t O ) f k ( U ) .  (4.4) 

Define m k A p k ( f , )  to be the kth moment of the distance between the monomers. 
Equations (2.16) and (4.4) give 

P k ( U )  = C O f k ( U )  = m;l fk(u)  (4.5) 

since the concentration of monomers is the reciprocal of the average distance between 
them. 

Because fk is the kth convolution of f, for a renewal distribution, the Fourier 
transform of f k  has a convenient property (Bailey 1964, p 225): 

& ( U )  = m ; ' f k ( v )  = m ; l f , k ( 4 .  (4.6) 

f,k(v) is the kth power off,(v). 
Equations (2.3)-(2.5) and (4.6) then give 

bk(U) = m;'flk-'(v)[l -f1(V)l2 

Hence, for renewal distributions, on either 2 (4.1) or R (4.2), equations (2.14), 
(4.3) and (4.7) give the following: 

~ ~ ( f ) - ( 4 / J r r ) ( 8 t ) - ~ ' ~ [ ( k -  i)m:+m,] 

c + ( t )  - ( 2 / 4 ~ ) ( 8 r ) - " ~  (4.8) 

c-( t )  - ( 1 / 4 ~ ) ( 8 r ) - ' / *  

since po( bk) = p l (  bk) = 0 and po( b+) = go( b-) = 0. For lattice distributions (Feller 1971, 
p 138), e.g. distributions on 2, If,(v)l = 1 for some U ,  so the summation of the infinite 
geometric series implicit in (4.7) for b- must, and probably can, be justified by continuity 
arguments for generalised functions (Lighthill 1978, p 28). Equations (4.8) correct 
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errors in the final two equations of I. Figure 2 demonstrates the asymptotic relationships 
implied by (4.8). 

5. Periodic, absorbing or reflecting boundary conditions 

The boundary conditions present only a few conceptual difficulties and can be handled 
by the principle of reflection. Naively, one might expect that the boundary condition 
solutions might superpose appropriate reflections of either the polymer concentrations 
or the initial monomer positions. In fact, as (2.1) shows, the concentrations in Ppoly 
depend on events involving monomer pairs; as a consequence, the appropriate reflec- 
tions take place in two dimensions, where they can account for paired interactions. 

We consider first the periodic media, Z( mod L) (periodic lattices of L points) and 
R (mod L) (circles of length L ) .  The reader may wish to reread § 2 up to the paragraph 
preceding (2.9). 

As before, the relevant aspects of the initial monomer distribution are specified by 
P k ( y ,  z). For a physically realistic monomer distribution on a periodic medium, only 
a finite number, say N, of monomers occur in a particular realisation of the initial 
distribution. This realisation contributes 0 to Pk(y ,  z )  for k 3  N. On 2 (mod L )  and 
R (mod L ) ,  each point is given an infinite number of coordinates, separated from one 
another by multiples of L. In order to get a unique representation of the initial monomer 
distribution, we define P k ( y ,  z) 

Equation (2.1) required a definition of a leftmost monomer in a polymer. The 
definition given there for infinite media can fail on a periodic medium, especially when 
all the monomers are in a single polymer. Even on a periodic medium, however, every 
polymer contains exactly one monomer which never met a polymer coming from the 
left. This yields a definition of leftmost monomers consistent with the definition for 
infinite media, and holding for periodic media as well. 

This definition allows ck(x, t )  to retain its interpretation as a probability (preceding 
(2.1)). The events A of (2.1) must be slightly modified, e.g. A. must include another 
condition: (c) if the medium is periodic, Po is the leftmost monomer in the polymer 
(i.e. Po met Pk- l  as Pk-l came from the right). As will be shown next, on Z (mod L) 
or R (mod L), the annihilation function is given by 

0, unless 0 < y < L and 0 < z - y  < L. 

iD 

a,(x,t;y,z)= C [a,(x, t;y-pL,z+pL)-a,(x,t;z-pL-L,y+pL+L)] (5.1) 
p = o  

where a,(x, t ;  y ,  z )  is the annihilation function for the corresponding infinite medium, 
2 or R, given implicitly by (2.6)-(2.8). 

Equation (5.1) can be demonstrated as follows (see figure 3(a) ) :  let the initial 
position of the relevant monomers Po and P be y and z, where 0 S y < L and 0 S z - y < 
L. In the definition of the events A preceding (2.1), P must now meet Po as P comes 
from the right, not from the left. 

The demonstration follows the proof of (2.8), but here the diffusing point starts at 
( y ,  z) in the parallelopiped bounded by the lines Y = 0, Y = L, Z - Y = 0 and 2 - Y = L, 
and finishes at time t on one of two paired half-lines starting from (x, x) .  The italicised 
restriction above is equivalent to the following: if the point ever passed through the line 
Z - Y = L, i t  passed through the line Z - Y = Ofirst. 

Reflections give an interpretation to the individual terms in (5.1): they correspond 
to sources of diffusive points of alternating sign +, -, +, . . . at ( y ,  z ) ,  ( z  - L, y + L ) ,  
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Y Y 

Figure 3. These reflections provide solutions for various boundary conditions on (0, L ) .  
Positive sources are in white; negative, in black. The two-dimensional diffusions can start 
anywhere in the shaded areas and can end anywhere on the black half-lines. A sample 
diffusive path is shown in each case. ( a )  Periodic. Because cancellation of diffusive points 
occurs at the lines 2 - Y = 0, Z - Y = L, 2 - Y = 215,.  . . , the sample diffusive path rep- 
resents those paths which cross Z - Y = 0 before they cross Z - Y = L. ( b )  Absorbing 
boundaries at position 0 and position L: diffusive points are cancelled on the square with 
vertices (0, O), (0, L ) ,  ( L ,  0) and ( L ,  L) .  ( c )  Absorbing boundary at position 0 and reflecting 
boundary at position L :  diffusive points are cancelled on the line segments joining (0,O) 
to (0, L )  or ( L ,  0). There is no diffusive flux across the line segments joining (L ,  L )  to 
(0, L )  or ( L ,  0). ( d )  Reflecting boundaries at position 0 and position L: there is no diffusive 
flux across the square with vertices (0, 0) ,  (0, L ) ,  ( L ,  0) and ( L ,  L) .  

( y  - L, z +  L ) ,  . . . . There is one source between each pair of lines Z - Y = qL and 
Z - Y = qL+ L, q = 0, 1 ,  2, . . . . Diffusive points arriving at the paired half-lines from 
the source between the lines Z - Y = qL and Z - Y = qL+ L either (a) passed through 
Z - Y = qL before passing through Z - Y = qL+ L or (b) passed through Z - Y = 
qL+ L before passing through Z - Y = qL. The cancellation of diffusive points occurr- 
ing at Z - Y = qL, q = 1 , 2 , 3 , .  . . , ensures that the sum in (5.1) equals aL(x, t ;  y ,  z ) .  

Because the points of Z (mod L )  and R (mod L )  have an infinite number of 
coordinates, separated from one another by multiples of L, the concentrations c(x, t )  
at a point must be summed over all of its coordinates . . . , x - L, x, x + L, . . . , to give 
the total concentration at that point. For finite L, (2.14) continues to hold, if 1/L 
replaces 1/2P in (2.10). P k ( U )  = o outside [o ,  L ) ,  because Pk(y ,  z )  0, unless o s y  < L 
and 0 s  z - y <  L, so only values of a ( t ;  U )  within [0, L )  are relevant. 
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Substituting both sides of (5.1) into (2.10) gives a relation between a J t ;  U )  and 
a,( t ;  U),  the spatially averaged annihilation functions for a periodic medium ( Z  
(mod L )  or R (mod L ) )  and its corresponding infinite medium ( Z  or R ) :  

cc 

aL(t ;  U)' [ a = ( t ;  u+2pL)-a,(t ;2L-u+2pL)].  
p = o  

(5.2) 

Equation (5.2) has also been proved directly by reflection (Balding 1988). Equation 
(5.2) can be used in conjunction with (2.14) to derive known results (Torney and 
McConnell 1983, Balding 1988) for periodic media. 

Absorbing or reflecting boundary conditions are easy by comparison (figures 3( b)- 
( d ) ) .  Without loss of generality, let the interval defined by the boundary conditions 
be (0, L ) ,  where L may be infinite. Unlike the case of periodic media, there is no 
complication in the definition of leftmost monomers, but the ranges of integration in 
the two integrals defining the annihilation Green function of (2.8) become (0, x ]  and 
(x, L} ,  where the brackets '{' and '}' represent either closed or open endpoints, 
depending on the boundary conditions. With this modification, let (2.8) continue to 
give the annihilation functions a(x, t ;  y, z )  even when z G y. This continuation ensures 
the correct conditions of zero concentration or zero flux of diffusing monomers at 
Y=O,Z=O, Y = L a n d Z = L .  

Paper I gives a discussion of the many other problems which can be solved with 
the method of (2.1). 
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